Search results for "vector [form factor]"

showing 10 items of 770 documents

Support Vector Machine and Kernel Classification Algorithms

2018

This chapter introduces the basics of support vector machine (SVM) and other kernel classifiers for pattern recognition and detection. It also introduces the main elements and concept underlying the successful binary SVM. The chapter starts by introducing the main elements and concept underlying the successful binary SVM. Next, it introduces more advanced topics in SVM for classification, including large margin filtering (LMF), SSL, active learning, and large‐scale classification using SVMs. The LMF method performs both signal filtering and classification simultaneously by learning the most appropriate filters. SSL with SVMs exploits the information contained in both labeled and unlabeled e…

Computer Science::Machine LearningOptimization problemActive learning (machine learning)business.industryComputer scienceBinary numberPattern recognitionSupport vector machineStatistical classificationComputingMethodologies_PATTERNRECOGNITIONMargin (machine learning)Kernel (statistics)Pattern recognition (psychology)Artificial intelligencebusiness
researchProduct

Upport vector machines for nonlinear kernel ARMA system identification.

2006

Nonlinear system identification based on support vector machines (SVM) has been usually addressed by means of the standard SVM regression (SVR), which can be seen as an implicit nonlinear autoregressive and moving average (ARMA) model in some reproducing kernel Hilbert space (RKHS). The proposal of this letter is twofold. First, the explicit consideration of an ARMA model in an RKHS (SVM-ARMA 2k) is proposed. We show that stating the ARMA equations in an RKHS leads to solving the regularized normal equations in that RKHS, in terms of the autocorrelation and cross correlation of the (nonlinearly) transformed input and output discrete time processes. Second, a general class of SVM-based syste…

Computer Science::Machine LearningStatistics::TheoryComputer Networks and CommunicationsBiomedical signal processingInformation Storage and RetrievalMachine learningcomputer.software_genrePattern Recognition AutomatedStatistics::Machine LearningArtificial IntelligenceApplied mathematicsStatistics::MethodologyAutoregressive–moving-average modelComputer SimulationMathematicsTelecomunicacionesHardware_MEMORYSTRUCTURESSupport vector machinesModels StatisticalNonlinear system identificationbusiness.industryAutocorrelationSystem identificationSignal Processing Computer-AssistedGeneral MedicineComputer Science ApplicationsSupport vector machineNonlinear systemKernelAutoregressive modelNonlinear DynamicsARMA modelling3325 Tecnología de las TelecomunicacionesArtificial intelligenceNeural Networks ComputerbusinesscomputerSoftwareAlgorithmsReproducing kernel Hilbert spaceIEEE transactions on neural networks
researchProduct

Detection of developmental dyslexia with machine learning using eye movement data

2021

Dyslexia is a common neurocognitive learning disorder that can seriously hinder individuals’ aspirations if not detected and treated early. Instead of costly diagnostic assessment made by experts, in the near future dyslexia might be identified with ease by automated analysis of eye movements during reading provided by embedded eye tracking technology. However, the diagnostic machine learning methods need to be optimized first. Previous studies with machine learning have been quite successful in identifying dyslexic readers, however, using contrasting groups with large performance differences between diagnosed and good readers. A practical challenge is to identify also individuals with bord…

Computer engineering. Computer hardwareSupport Vector MachineComputer sciencemedia_common.quotation_subject02 engineering and technologyMachine learningcomputer.software_genre050105 experimental psychologyDyslexiaTK7885-7895FluencysilmänliikkeetoppimisvaikeudetReading (process)dyslexia0202 electrical engineering electronic engineering information engineeringmedicinedysleksia0501 psychology and cognitive sciencessupport vector machinemedia_commonRandom ForestRecallbusiness.industry05 social sciencesDyslexiaEye movementGeneral MedicineQA75.5-76.95diagnostiikkamedicine.diseaseRandom forestkoneoppiminenElectronic computers. Computer scienceLearning disabilityEye tracking020201 artificial intelligence & image processingArtificial intelligencemedicine.symptombusinesscomputerrandom forestArray
researchProduct

Deep CNN for IIF Images Classification in Autoimmune Diagnostics

2019

The diagnosis and monitoring of autoimmune diseases are very important problem in medicine. The most used test for this purpose is the antinuclear antibody (ANA) test. An indirect immunofluorescence (IIF) test performed by Human Epithelial type 2 (HEp-2) cells as substrate antigen is the most common methods to determine ANA. In this paper we present an automatic HEp-2 specimen system based on a convolutional neural network method able to classify IIF images. The system consists of a module for features extraction based on a pre-trained AlexNet network and a classification phase for the cell-pattern association using six support vector machines and a k-nearest neighbors classifier. The class…

Computer science02 engineering and technologyConvolutional neural networklcsh:TechnologyIIF imageAlexNetlcsh:Chemistry03 medical and health sciencesconvolutional neural networks (CNNs)Autoimmune diseaseClassifier (linguistics)0202 electrical engineering electronic engineering information engineeringGeneral Materials Scienceautoimmune diseasesInstrumentationlcsh:QH301-705.5030304 developmental biologyIIF imagesFluid Flow and Transfer Processes0303 health sciencesDeep cnnIndirect immunofluorescenceaccuracybusiness.industrylcsh:TProcess Chemistry and Technologyk-nearest neighbors (KNN)General EngineeringPattern recognitionIIfClass (biology)lcsh:QC1-999Computer Science ApplicationsSupport vector machinelcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040System parameters020201 artificial intelligence & image processingsupport vector machine (SVM)Artificial intelligencebusinesslcsh:Engineering (General). Civil engineering (General)lcsh:PhysicsApplied Sciences
researchProduct

Feedback linearization control of wind turbine equipped with doubly fed induction generator

2017

This paper focuses on several control techniques of a wind turbine of rated power of about 1 MW. In particular, a wind generator equipped with an asynchronous doubly-fed induction machine has been considered and its dynamic model in MATLAB/SIMULINK environment has been implemented. Starting from this model the feedback linearization control has been derived, and several simulations have been carried out, with the aim of compare its dynamic performances with the classical field oriented control, and with the V/f control. The results allow us to conclude that a DFIG controlled by a feedback linearization technique ensures better dynamic performance.

Computer science020209 energyControl (management)Biomedical EngineeringEnergy Engineering and Power Technology02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciTurbinedynamic performancelaw.inventionSettore ING-INF/04 - AutomaticaControl theorylaw0202 electrical engineering electronic engineering information engineeringFeedback linearizationDoubly-fed induction generatorMATLABcomputer.programming_languageVector controlRenewable Energy Sustainability and the Environment020208 electrical & electronic engineeringfeedback linearization controlPower ratingAsynchronous communicationDoubly fed electric machinecomputer
researchProduct

Multimodal Images Classification using Dense SURF, Spectral Information and Support Vector Machine

2019

International audience; The multimodal image classification is a challenging area of image processing which can be used to examine the wall painting in the cultural heritage domain. In such classification, a common space of representation is important. In this paper, we present a new method for multimodal representation learning, by using a pixel-wise feature descriptor named dense Speed Up Robust Features (SURF) combined with the spectral information carried by the pixel. For classification of extracted features we have used support vector machine (SVM). Our database was extracted from acquisition on cultural heritage wall paintings that contain four modalities UV, Visible, IRR and fluores…

Computer scienceComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processing02 engineering and technologyImage (mathematics)0202 electrical engineering electronic engineering information engineeringFeature descriptorRepresentation (mathematics)Spectral informationSpeeded up robust features SURFGeneral Environmental SciencePixelbusiness.industry[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020206 networking & telecommunicationsPattern recognitionSVM classificationSupport vector machineCultural heritageMultimodal imagesCielab spaceDense features[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]General Earth and Planetary Sciences020201 artificial intelligence & image processingArtificial intelligencebusinessFeature learning
researchProduct

A Wavelet approach to extract main features from indirect immunofluorescence images

2019

A number of previous studies have shown that IIF image analysis requires complex and sometimes heterogeneous and diversified methods. Robust solutions can be proposed but they need to orchestrate several methods from low-level analysis up to more complex neural networks or SVM for data classification. The contribution intends to highlight the versatility of Wavelet Transform (WT) and their use in various levels of analysis for the classification of IIF images in order to develop a system capable of performing: image enhancement, ROI segmentation and object classification. Therefore, WT was adopted in the de-noise section, segmentation and classification. This analysis allows frequencies cha…

Computer scienceData classificationWavelet Transform02 engineering and technologyPattern Recognition030218 nuclear medicine & medical imaging03 medical and health sciencesSegmentation0302 clinical medicineWaveletRobustness (computer science)IIF dataset0202 electrical engineering electronic engineering information engineeringSegmentationMedical diagnosisSettore INF/01 - InformaticaArtificial neural networkbusiness.industryDenoiseWavelet transformPattern recognitionClassificationSupport vector machine020201 artificial intelligence & image processingArtificial intelligencebusinessProceedings of the 20th International Conference on Computer Systems and Technologies
researchProduct

Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

2008

The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…

Computer scienceFeature vectorData classificationcomputer.software_genreKernel (linear algebra)Composite kernelMultitemporal classificationElectrical and Electronic EngineeringSupport vector domain description (SVDD)Remote sensingTelecomunicacionesSupport vector machinesContextual image classificationbusiness.industryKernel methodsPattern recognitionSupport vector machineKernel methodKernel (image processing)Change detectionGeneral Earth and Planetary Sciences3325 Tecnología de las TelecomunicacionesArtificial intelligenceData miningInformation fusionbusinessMultisourcecomputerChange detectionIEEE Transactions on Geoscience and Remote Sensing
researchProduct

A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

2014

Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, gras…

Computer scienceLand coverimaging spectrometrysub-pixel mappingKernel (linear algebra)urban land coverPartial least squares regressionlcsh:Sciencespatial resolutionHyMapRemote sensingmachine learning; regression; sub-pixel mapping; spatial resolution; imaging spectrometry; hyperspectral; urban land coverTraining setArtificial neural networkbusiness.industryHyperspectral imagingPattern recognitionRandom forestSupport vector machineKernel methodmachine learninghyperspectralKernel (statistics)General Earth and Planetary Sciencesregressionlcsh:QArtificial intelligencebusinessRemote Sensing
researchProduct

Structured Output SVM for Remote Sensing Image Classification

2011

Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…

Computer scienceMultispectral imageTheoretical Computer ScienceSet (abstract data type)Kernel (linear algebra)One-class classificationRemote sensingSupport vector machinesStructured support vector machinePixelContextual image classificationbusiness.industryKernel methodsPattern recognitionLand use classificationSupport vector machineTree (data structure)Kernel methodHardware and ArchitectureControl and Systems EngineeringModeling and SimulationKernel (statistics)Radial basis function kernelSignal ProcessingStructured output learningArtificial intelligenceTree kernelStructured output learning; Support vector machines; Kernel methods; Land use classificationbusinessInformation SystemsJournal of Signal Processing Systems
researchProduct